Das schwerste Teilchen, das Higgs, und der Weltuntergang

oder: was hat das Universum mit einem Dampfkessel gemeinsam?

tl;dr Könnte das schwerste bisher bekannte Teilchen den Weltuntergang auslösen? Jein, aber es besteht kein unmittelbarer Grund zur Beunruhigung, und die theoretische Begründung ist ziemlich gewagt.

Auch wenn man sich vom Large Hadron Collider vor allem Entdeckungen neuer Teilchen und Kräfte erhofft, ist das doch nur die Kür neben einem ebenso wichtigen Pflichtprogramm – der genaueren Vermessung der schon bekannten Teilchen und Wechselwirkungen. Dabei kann auch bei dieser vermeintlichen Routinearbeit eine sensationelle Entdeckung gemacht werden – Wenn beispielsweise herauskäme, dass das 2012 entdeckte Higgs-Teilchen wesentlich häufiger oder seltener in bestimmte andere Teilchen zerfällt als erwartet, wäre das ähnlich revolutionär, als wenn man gleich ein neues Teilchen entdecken würde – beides würde das seit Jahrzehnten als Königin der Quantentheorien regierende Standardmodell der Teilchenphysik vom Thron stoßen.

Die Eigenschaften des schwersten bisher bekannten Elementarteilchens – des Top-Quarks – genauer zu kennen, ist besonders wichtig für unser Verständnis der fundamentalen Wechselwirkungen: Durch seine Masse ist es dasjenige der bekannten Teilchen, das am stärksten mit dem massenspendenden Higgsfeld wechselwirkt, und damit wohl auch am stärksten mit seiner Teilchenanregung, dem Higgs-Boson. Damit stellt es ein wichtiges Fenster zum besseren Verständnis dieses für die Forschung noch so jungen Teilchens dar. Um die Eigenschaften des Higgs-Teilchens richtig interpretieren zu können, ist es also wichtig, die Masse des Top-Quarks möglichst genau zu kennen – eine alles andere als triviale Aufgabe! Auf der gerade zuende gehenden LHCP-Konferenz in Lund wurde eine neue kombinierte Analyse von Messungen dieser wichtigen Größe gezeigt, und das ist das Ergebnis:

 

Der tiefste Punkt der Parabel rechts ist der „beste Fit“ der Masse, also der Wert, bei dem das Theoriemodell am besten zu den Messdaten passt. Er liegt für die neue Kombination bei etwa 172.9 GeV. Zum Vergleich, ein einzelnes Goldatom wiegt etwa 183 GeV, ein Wasserstoffatom wiegt etwa 1 GeV, das Higgs-Teilchen etwa 125 GeV, und ein Elektron 0.000511 GeV. Dass das Top so schwer ist, wissen wir schon seit seiner Entdeckung im Jahr 1995.

Die genaue Masse des Tops zu kennen, ist aber noch aus einem anderen, kosmisch überraschend bedeutsamen Grund wichtig: Die Stabilität des Universums an sich könnte davon abhängen! Wie kann das sein? Nun, das Higgs-Feld hat zur Zeit überall im sichtbaren Universum einen bestimmten Wert, den man durch Messungen schon lange zu etwa 175 GeV bestimmen konnte – diese Zahl gibt gewissermaßen die grobe Massenskala vor, an der sich alles abspielt, was mit der elektro-schwachen Wechselwirkung zu tun hat. So liegen die Massen der W-, Z-, und Higgs-Bosonen, also der wichtigsten Akteure der schwachen Wechselwirkung, mit 80, 91 und 125 GeV gerade bei dieser Größenordnung. Weshalb viele der anderen Teilchen so viel leichter sind – das ist eine Geschichte für sich, und auch noch nicht wirklich verstanden, sofern es da etwas zu verstehen gibt. Das Higgs-Feld hat also diesen Wert, und der bleibt nicht nur dieser Tage schön konstant, sondern kann sich auch in den letzten 14 Milliarden Jahren nicht wesentlich verändert haben, denn wenn er sich ändern würde, hätte das solch einen schwerwiegenden Einfluss auf die Eigenschaften der übrigen Teilchen, dass die Materie, wie wir sie kennen, nicht existieren könnte.

Was stellt aber sicher, dass der Wert des Higgs-Feldes immer so schön gleich bleibt? Die Tatsache, dass es Energie kosten würde, wenn das Higgs-Feld einen anderen Wert annimmt! Aus dem gleichen Grund tauchen nicht plötzlich aus dem Nichts starke magnetische oder elektrische Felder auf – der Zustand ohne Feld hat eine niedrigere Energie, und will man dauerhaft eines haben, muss man welche reinstecken. Solange jeder andere Wert des Higgs-Felds also einer höheren Energie entspricht, wird sich das Feld abgesehen von kurzfristigen Quantenfluktuationen nie dauerhaft vom Status Quo wegbewegen. Von der so gewonnenen Stabilität hängt unsere Existenz ab.

Schaut man sich die Wechselwirkungen zwischen dem Higgs-Feld und dem Top-Quark aber genauer an, stellt man fest, dass sie das Higgs-Feld destabilisieren können! Wäre das wirklich so, könnte das Higgs-Feld spontan anfangen, in sich mit Lichtgeschwindigkeit ausdehnenden Blasen zu einem riesigen Wert zu springen, an dem es aber eine niedrigere Energie hätte als jetzt. Das Prinzip ist ähnlich wie bei einem Dampfkessel beim Siedeverzug, in dem das überhitzte Wasser schlagartig zu sieden beginnt und den Kessel zerreißt. Die Welt, wir wir sie kennen, würde dieses Spektakel nicht überleben. Ob wir uns laut Theorie in diesem Bereich der Instabilität befinden, wird in dieser Grafik gezeigt:

metastable
(Quelle: Jose Espinosa, http://arxiv.org/abs/arXiv:1512.01222, und Referenzen)

Hier sind drei Regionen eingezeichnet: Stabilität, Meta-Stabilität und Instabilität. Im grünen Bereich ist… alles im grünen Bereich. Ist das Top-Quark leicht genug und/oder das Higgs-Teilchen schwer genug, bleibt die Energie groß genug und der aktuelle Wert des Higgs-Felds ist gesichert. Ist das Top-Quark etwas schwerer und/oder das Higgs-Teilchen etwas leichter, befinden wir uns im roten Bereich: Hier könnte das Higgs-Feld spontan einen neuen Wert annehmen und zum Weltuntergang führen. Im gelben Bereich könnte das Universum zwar im Prinzip die Krätsche machen, der Energiegewinn wäre dabei aber klein genug, dass das selbst auf kosmischen Zeitskalen extrem unwahrscheinlich ist.

Diese Grafiken haben sich in den vergangenen Jahren nicht stark verändert, und bemerkenswerterweise lagen die gemessenen Werte schon seit geraumer Zeit genau an der Grenze zwischen theoretischer Stabilität und Instabilität! Ob das etwas zu bedeuten hat, und was, das weiß niemand sicher, aber es ist zumindest eine bemerkenswerte Tatsache. Die neuen Messungen der Masse des Top-Quarks liegen mit 172.9 GeV innerhalb dieser älteren Schranken, zementieren aber noch einmal die Tatsache, dass wir uns abseits des grünen Bereichs in der – prinzipiell – instabilen Region befinden, in der das Universum – im Prinzip – durch eine Art kosmischen Schluckauf vernichtet werden könnte. Wir lägen aber in einem Bereich, in dem dieses Unglück so extrem unwahrscheinlich ist, dass es auch in einem Vielfachen des Alters des Universums nicht eintreten wird.

All das ist aber mit einer großen Prise Salz zu nehmen: Die Herleitung der Instabilität des Higgs-Feldes ist die Vorhersage einer Theorie – des Standardmodells der Teilchenphysik –  und um sie zu machen, muss man davon ausgehen, dass diese Theorie über viele Größenordnungen der Energie unverändert ihre Gültigkeit behält. Findet man morgen neue Teilchen am Large Hadron Collider, würde das dieses Bild potentiell komplett über den Haufen werfen. Wir wissen noch nicht, wie die Neutrinos ihre Masse bekommen, und wir wissen nicht, aus was die Dunkle Materie besteht – all diese offenen Fragen legen nahe, dass das Bild, wie es von den Stabilitätsgrafiken oben gezeichnet wird, nur ein vorläufiges ist. Ob das Higgs-Feld wirklich stabil oder instabil ist, werden wir möglicherweise nie wirklich herausfinden können. Dass wir aber zumindest laut der aktuellen Theorie scheinbar an der Klippe, am Rand der Katastrophe leben, lädt dennoch zum Grübeln ein – was will uns die Natur damit wohl sagen…

 

Kommentar verfassen

Trage deine Daten unten ein oder klicke ein Icon um dich einzuloggen:

WordPress.com-Logo

Du kommentierst mit Deinem WordPress.com-Konto. Abmelden /  Ändern )

Google Foto

Du kommentierst mit Deinem Google-Konto. Abmelden /  Ändern )

Twitter-Bild

Du kommentierst mit Deinem Twitter-Konto. Abmelden /  Ändern )

Facebook-Foto

Du kommentierst mit Deinem Facebook-Konto. Abmelden /  Ändern )

Verbinde mit %s